글로벌 [[프플컨페런스 2023

Global ICT Standards Conference 2023

ICT Standards Insight
Session 2: ISO/IEC's IoT and Digital Twin Standardization

ISO/IEC Standardization strategy on loT and Digital Twin

François Coallier, Chair, ISO/IEC JTC 1/SC 41

<u>Index</u>

- The context: ISO/IEC JTC 1
- Nature of the Internet of Things (IoT)
- IT/OT Convergence and the IIoT
- Digital Twin
- Strategic Approaches
- Current Status
- Future Directions

SUMMARY

The Internet of Things (IoT) is a system concept that incorporate many IT and, for some applications, OT technologies. IoT systems are network intensive, and data driven.

The processing of this data, through advanced analytics and Digital Twin technologies, provide value and enable a 'smarter' world.

This presentation will outline ISO/IEC JTC 1/SC 41 standardization strategy on IoT and Digital Twin.

Technical Areas	ISO/IEC JTC 1 (Information Technology) Subcommittees and Working Groups
Application Technologies	SC 36 - Learning Technology
Cultural and Linguistic Adaptability and User Interfaces	SC 02 - Coded Character Sets SC 22/WG 20 – Internationalization SC 35 - User Interfaces
Data Capture land Identification Systems	SC 17 - Cards and Personal Identification SC 31 - Automatic Identification and Data Capture Techniques
Data Management Services	SC 32 - Data Management and Interchange
Document Description Languages	SC 34 - Document Description and Processing Languages
Information Interchange Media	SC 23 - Optical Disk Cartridges for Information Interchange
Multimedia and Synthesis	SC 24 - Computer Graphics and Image Processing SC 29 - Coding of Audio, Picture, and Multimedia and Hypermedia Information WG12 - 3D Scanning and Printing
Networking and Middleware	SC 06 - Telecommunications and Information Exchange Between Systems SC 25 - Interconnection of Information Technology Equipment SC 38 - Cloud Computing and Distributed Platforms
Office Equipment	SC 28 - Office Equipment
Green IT	SC 39 – Sustainability, IT and data centres
Programming Languages and Software Interfaces	SC 22 - Programming Languages, their Environments and Systems Software Interfaces
Cybersecurity	SC 27 - Information security, cybersecurity and privacy protection SC 37 - Biometrics

SC 07 - Software and System Engineering

SC 41 – Internet of Things and Digital Twin

SC 40 – IT Governance and IT Management

SC 37 - Biometrics

WG 11 - Smart City

WG13 - Trustworthiness

SC 42 - Artificial Intelligence

WG 14 - Quantum Computing

SC43 - Brain-computer interfaces

Software, Processes and Systems

Internet of Things

Smart Cities

Artificial Intelligence

Quantum Computing

Brain-computer interfaces

SC 41 establishment - Nov 2016

Resolution 12 – Establishment of JTC 1 Subcommittee SC 41, Internet of Things and related technologies

JTC 1 establishes a Systems Integration entity (see SD 24, Systems Integration Standardization Guidelines) in the form of a new Subcommittee 41 on Internet of Things and related technologies initially comprising the work of JTC 1/WG 7 and JTC 1/WG 10.

November 2020 - addition of Digital Twin

Title: Internet of Things and Digital Twin

Scope:

Standardization in the area of Internet of Things and Digital Twin, including their related technologies.

- 1. Serve as the focus and proponent for JTC 1's standardization programme on the Internet of Things and Digital Twin, including their related technologies.
- 2. Provide guidance to JTC 1, IEC, ISO and other entities developing Internet of Things and Digital Twin related applications.

ISO/IEC Definition of the Internet of Things (IoT)

3.2.8

Internet of Things

IoT

infrastructure of interconnected entities, people systems and information resources together with services which processes and reacts to information from the physical and virtual world

About the Internet of Things (IoT)

- The IoT is a <u>system concept that use many technologies</u> that are standardized by other JTC 1 entities and SDOs ranging from networking and <u>Digital Twin</u> to cloud computing and AI.
- IoT systems are <u>software and data intensive</u> as well as <u>network-centric</u>. They can be quite complex, ranging from simple architecture to <u>multi-tier distributed</u> <u>computing</u> cyberphysical systems.
- IoT systems are key enablers of 'Smart Everything'

A Distributed and Network centric System or System of Systems

Modified from:

sensor (3.3.29) that uses specific biochemical reactions mediated by isolated enzymes, immunosystems, tissues, organelles or whole cells to detect chemical compounds usually by electrical, thermal or optical signals

[SOURCE: Modified from IUPAC GoldBook (DOI: 10.1351/goldbook.B006 63)]

[SOURCE IEC/SEG 12 Biodigital convergence vocabulary Draft 1.1, 3.2.24]

DTw and IoT systems are data driven

Convergence IT / OT

IT/OT convergence is the integration of information technology (IT) systems used for data-centric computing with operational technology (OT) systems used to monitor events, processes and devices and make adjustments in enterprise and industrial operations.

ngs-a-short-series-of-observations-pt-2-sensorsactuators-infrastructure, https://parasam.me/2016/05/19/iot-internet-of-thi

ACTUATORS

Global ICT Standards Conference 2023 글로벌ICT 표준 컨테런스 2023

Linear piezoelectric actuator 80 - 2000 µm

amplified

Sold by:

DSM 9 USA - Tennessee

■ See contact information

An electric self-sensing and variable-stiffness artificial muscle. Credit: Chen Liu et. al, Advanced Intelligent System

https://scitechdaily.com/bionic-breakthrough-revolutionary-self-sensing-electric-artificial-muscles/

IT and OT Convergence —a view

IoT enable 'Smarts'

ISO/IEC Definition of Digital Twin (DTw)

3.2.8
digital twin
DTw

digital representation of a target entity with data connections that enable convergence between the physical and digital states at an appropriate rate of synchronization

Note 1 to entry: Digital twin has some or all of the capabilities of connection, integration, analysis, simulation, visualization, optimization, collaboration,

etc.

Note 2 to entry: Digital twin can provide an integrated view throughout the life cycle of the target entity.

About Digital Twin (DTw)

According to Gartner and Deloitte, a digital twin as a <u>digital representation</u> of a <u>real-world entity or system</u>. It is an evolving digital profile of the historical and current behavior of a physical object or process.

The implementation of a digital twin is an encapsulated software object or model that <u>mirrors</u> a unique physical object, process, organization, person or other abstraction. The digital twin is thus based on massive, cumulative, <u>real-time</u>, <u>real-world</u> data <u>measurements</u> across an array of dimensions.

Data from multiple digital twins can be aggregated for a composite view across a number of real-world entities, such as a ship, a bridge, a building, a factory, a supply-chain or a city.

About Digital Twin (DTw)

Mirroring is done through <u>synchronization</u> using <u>data streams</u>. The data streams are generated by <u>sensors</u>, but also <u>transactions</u> and other sources (virtual sensors).

Digital Twin (DT) is an enabler Smart Everything, being based on measurements that creates an <u>evolving profile</u> of the entity or system in the digital world, it provides important insights on system performance, leading to actions in the real world such as a change in system and process design, or optimizing business performance.

Digital Twin Horizontality

'Technologies' found in IoT and DTw systems

- IoT and DTw architectures (JTC 1/SC 41)
- Sensors, actuators, tags (IEC/TC 72, JTC 1/SC 31,..)
- Networks... (JTC 1/SC 6, IEC/SEG 8, ITU-T,..)
- Cloud computing (JTC 1/SC 38)
- Big Data (JTC 1/SC 42)
- AI (JTC 1/SC42)
- Cybersecurity (JTC 1/SC 27)
- Software and Systems Engineering (JTC 1/SC7)
-

Double 'horizontality'

Therefore, JTC 1/SC41 can be considered as being double 'horizontal' by regard to:

- technologies used in IoT and DTw systems
- application domains or sectors

http://www.nonprofituniversityblog.org/2011/05/strategic-planning-the-right-way/

Strategic Approaches

- Concentrate on foundational standards: vocabularies, reference architectures, interoperability, trustworthiness
- Systematically collect use cases across all application domains to elicit and document standardization requirements
- Have an 'incubator' to kick-start domains or sectors applications and cover 'dead-angles'

Selected Reference Architectures Relationships

Modified from the JTC 1 (N15208) Draft Meta Reference Architecture for Systems Integration Specification

Strategic Approaches

- Coordinate and partner as required with ISO, IEC and JTC 1 entities as well as other Standards Development Organizations (SDOs) that have the mandate and resources to develop standards for technologies used in IoT and DTw systems.
- Coordinate and partner as required with ISO and IEC entities that mandate and resources to develop standards that use IoT and DTw in specific application domains or sectors.

Current Status

글로벌ICT 포준 컨테런스 2023

SC 41 Structure (June 2023)

Published Standards

(TR technical report – TS technical specification)

20924 2021

IoT - Vocabulary

30141 2018 IoT reference architectures

30147 2021 Integration of IoT trustworthiness in ISO/IEC/IEEE 15288

> 30164 2020 IoT Edge computing

> > 30165 2021 Real-time IoT

30166 TR 2020 Industrial IoT

Foundational

21823-1 2020

IoT interoperability framework

21823-2 2020 IoT transport interoperability

21823-3 2021 IoT semantic interoperability

21823-4 2024 IoT syntactic interoperability

30161-1 2020 Data exchange platform for IoT -Requirements & architecture

30161-2 2023 Data exchange platform for IoT -Transport interoperabiltiv

30162 2023 Compatibility requirements within industrial IoT systems

Interoperability

22417 TR 2017

IoT use cases

30163 2021 SN-based integrated platform for chattel asset monitoring

30169 2022 IoT applications for electronic label systems (ELS)

30176 TR 2021 Integration of IoT and DLT/blockchain: use cases

30179 2023 IoT system for ecological environment monitoring

Application

29182-1 2017 SNRA General overview and requirements

29182-2 2013 SNRA Vocabulary and terminology

29182-3 2014 SNRA Reference architecture views

29182-4 2013 SNRA Entity models

> 29182-5 2013 SNRA Interface definitions

Applications

29182-7 2015 SNRA Interoperability guidelines

20005 2013 Collaborative information processing in intelligent SN

30128 2014 Generic SN Application Interface

19637 2016 SN testing framework

22560 TR 2017 SN -Aeronautics active air-flow

Sensor network

29182-6 2014 SNRA

30101:2014 SN and its interfaces for smart grid system

control

30140-1 2018 UWASN -Overview and requirements

30140-2 2017 UWASN -Reference architecture

30140-3 2018 UWASN -Entities and interfaces

30140-4 2018 UWASN -Interoperability

30142 2020 UWASN -Network mgt system overview & requirements

30142-2 2020 UWASN -Network management system u-MIB

30143 2020 UWASN -Application profiles

30171-1 2022 B-UWAN -Overview and requirements

Underwater acoustic network

Source: Antonio Kung (FR)

Standards under development | Standards under development | Standards Conference 2023 | Standards Conference 202

20924 Ed2 IoT and digital twin – Vocabulary (WG3)

30141 Ed2

IoT reference architecture

(WG3)

30173 Digital twin concepts and teminology (WG6)

30168 TS Generic Trust Anchor API for Industrial IoT Devices (WG3)

30149 TS IoT trustworthiness principles

30187 Evaluation indicator for IoT systems (WG5)

30188

(WG3)

Digital twin Reference Architecture (WG6)

30186

Digital twin maturity model (WG6)

PWI 16 Digital Twin – Extraction and transactions of data components (WG6)

PWI 17 Guidance on IoT and digital twin integrations in data spaces (WG6)

Foundational

30178 IoT Data format, value and coding (WG4)

30181 Functional architecture for resource ID interoperability (WG4)

PWI 8 IoT and Digital twin Behavioral and policy interoperability (WG4)

TR PWI 11 Digital twin correspondence measure of DTw twinning (WG6)

Interoperability

30194 TR Best practices for use case projects (SC41)

30180 Status of self-quarantine through IoT data interfaces (WG5)

30189-1 TR IoT-based cultural heritage management – Framework (WG5)

TR PWI 13 IoT Apps for long-distance oil & gas transmission pipeline (WG5)

TR PWI IoT Apps for natural gas distribution system (WG5)

PWI System requirements of IoT-based fixed asset seizure management (WG5)

Applications

30172 TR

Digital twin use cases (WG5)

30184 Autonomous IoT object identification in connected home (WG5)

TR PWI 12 Environmental

effect of underwater

acoustic signalling (WG7)

TR PWI 10 IoT-based

cultural heritage

management - Use cases

(WG5)

30183 Interoperability of UWASNs based on underwater delay & U-DTN (WG7)

30177 Underwater

network mgt system

(U-NMS) interworking

(WG7)

30185 Interoperability of UWASNs & IPV6 (WG7)

Underwater

Source: Antonio Kung (FR)

Future directions

- Use the opportunity of the revision of the IoT foundational standards to improve its structure and its integration with standards in related technologies
- Develop a strong set of Digital Twin foundational standards
- Continue to explore how to bring more value out of the collection of standards and work program in the area of Maritime IoT and DTw.
- Develop further, through established JWG, and exploratory JAGs, cooperative work with IEC/TC 65 (Industrial Automation), the IEC SyC on Smart Energy and IEC/TC 57.
- Continue to develop cooperation and partnership with the application domains and sectors
- Explore further cooperations with SDOs

Thank you

François Coallier, Chair, ISO/IEC JTC 1/SC 41 francois.coallier@etsmtl.ca