Global ICT Standards Conference 2023

IoT and Digital Twin International Standardization (JTC 1/SC 41) Workshop

Digital Twin Standardization Activities in ISO/IEC JTC 1/SC 41

Dr. Sha WEI, WG 6 Convenor

Chinal Academy of Information and Communications Technology

<u>Index</u>

01 Background

02 Key Concepts

03 Progresses of the Undergoing Projects

Digital Twin Standardization Activities in ISO/IEC JTC 1/SC 41

01. About presentation

Digital Twin Standardization Activities in ISO/IEC JTC 1/SC 41

In the ever-evolving realm of digital transformation, the concept of the 'Digital Twin' stands at the forefront. This presentation delves deep into the ongoing standardization activities related to Digital Twins within ISO/IEC JTC 1/SC 41. It will explore the intrinsic details of defining key concepts and terminologies, laying down a robust reference architecture, elucidating real-world use cases, and understanding the maturity models of Digital Twin implementation. Additionally, we'll shed light on several Preliminary Work Items (PWIs) that play a pivotal role in shaping the future standards of this digital paradigm.

02. About ISO/IEC JTC 1 SC 41

History

- 2009: Creation of JTC 1/WG 7: Sensor networks
- 2014: Creation of JTC 1/WG 10: IoT
- 2016: Creation of SC41: IoT and related technologies
 - Merging of WG 7 and WG 10
- 2020: Adding Digital Twins in the scope

Scope

Standardization in the area of Internet of Things and Digital Twin, including their related technologies.

- Serve as the focus and proponent for JTC 1's standardization programme on the Internet of Thi ngs and Digital Twin, including their related technologies.
- Provide guidance to JTC 1, IEC, ISO and other entities developing Internet of Things and Digital Twin related applications.

03. ISO/IEC JTC 1/SC 41 Structure

04. Digital Twins Standards under Development (Yellow Dots)

05. Relevant SDOs and Consortia

06. **Definition of Digital Twin**

digital twin

digital representation(3.1.7) of a target entity(3.1.2) with data connections the at enable convergence between the physical and digital states at an appropriate rate of synchronization

Note 1 to entry: Digital twin has some or all of the capabilities of connection, integration, analysis, simulation, visualization, optimization, collaboration, etc.

Note 2 to entry: Digital twin can provide an integrated view throughout the life cycle of the target entity.

07. Digital Twin System Context Diagram

08. Digital Twin Lifecycle Process

08. Digital Twin Stakeholders

09. Functional View of Digital Twin

10. ISO/IEC TR 30172 Digital twin - Use cases

Table 2 - List of use cases by status of lifecycle

Status of lifecycle	Numbers of use cases
Inception phase	4
Design and development phase	6
Installation phase	4
Deployment phase	11
Operation and monitoring phase	4
Re-evaluate phase	3
Retirement phase	2

11. Statistics on adopted key technologies from use cases

12. ISO/IEC 30188 Digital Twin Reference Architecture

13. ISO/IEC 30188 Digital Twin Reference Architecture

14. ISO/IEC 30186 Digital Twin Maturity Model

15. PWI Digital twin correspondence measure of DTw twinning

- Correspondance measure of DTw twinning
 - Needs fo DTw twinning measures
 - Characteristics of digital twin system against Metaverse, AR, CPS
 - DTw twinning cycle: mutual augmentation.
 - How to differentiate human twins.
 - Analysis of related international standars
 - Quality information framework (ISO 23952).
 - Preduct data quality (ISO/PAS 26183)
 - Equivalence validation (ISO 10303-62).
 - Hybrid B-rep modeling
 - Measuring the fidelity of digital twin.
 - Similarity measures
 - How to measure similarity
 - Static similarity measure
 - Temporal similarity measure
 - Similarity measure for 3D CAD models
 - Correspondence measure
 - What is twinning correspondence?
 - Hybrid of spatial measure and temporal measures.
 - Relation with other DTw projects including maturity level
 - Elements of the correspondence measure

- Correpondence: the agreement of things with each other
- Twinning: pairing or union of two similar or identical objects

Figure 15 Elements of correspondence measure

16. PWI Guidance on integration of IoT and Digital twins in Data Spaces

- Mapping DIKW pyramid to digital twins
- Integrating virtual sensors

17. PWI Policy and Behavioral Interoperability

- Target entity
 - Implements

 Interaction and
 public behaviour
 models
- Digital entity
 verifies and
 validates behavior
 of target entity
 - E.g. compliance of data usage

Interaction models

Behaviour models

Thank you

Name, Department / Position, Affiliation E-mail@email.kr