

뉴노멀시대선도를위한 ICT 표준의 역할

5G의 추구 목표를 완성하는 Release 17 무선접속 기술

LG 전자, 윤영우 수석연구위원

5G NR overall timeline

뉴 노멀 시대 선도를 위한 ICT 표준의

mMTC³⁾

Basic

URLLC²⁾

V2X

Rel-15 highlights

Establishing 5G NR and 5GS foundation in Rel-15

→ Phase 1 of 5G NR and 5GS designed to encompass all the use cases, but initial focus was on the support of eMBB type services

NR phase 1 main feature

Scalable OFDM based air interface

Flexible Framework

Advanced channel coding (LDPC, polar code)

LTE-NR Dual Connectivity

Beam based air interface for mmWave spectrum

Massive MIMO for sub-6GHz

5GS phase 1 main feature

Service Based Architecture

Network slicing

Distributed UPFs & edge computing

Common core architecture

Reference: Qualcomm, "Future of 5G"

Rel-16 highlights

Extending to new use cases and industries

- Enhancing basic functionalities for more advanced eMBB use cases
- Focusing more on support of other industries (factories, automotive, TV Broadcast, etc.)

Rel-16 Main Features

Enhancing Basic Functionalities

MIMO enhancements

Integrated Access
& Backhaul

Mobility enhancements

CLI (Cross Link Interference)

Management

UE power saving

NR positioning

DC/CA enhancements

NR-U

(unlicensed)

SBA enhancements

NW automation SON & MDT

URLLC enhancements

lloT (Industrial IoT)

5G V2X

5G broadcast (w. LTE eMBMS)

Non-Public Network

5G LAN

Rel-17 Schedule

Overall timeline for Rel-17 NR

- Current milestones below (left figure) already shows a 3-months shift compared to previous timelines approved in '19.12
- Potential new timeline (right figure) shows shift of further 6-months due to the effects of COVID-19
 - Expect Electronic era to last throughout 2021 in the worst case
 - The leadership is committed to facilitate delivering Rel-17 with minimal additional delay
 - Firmly commit to a new timeline in December

Rel-17 Overview

Categorization of Rel-17 NR work areas

eMBB oriented features
(Enhancing basic functionalities)

- NR MIMO enhancements
- Positioning enhancements
- UE power saving enhancements
- Coverage enhancements
- IAB enhancements
- RAN slicing
- Multi-SIM
- NR broadcast/multicast
- NTN (Non-Terrestrial Network)
- NR support above 52.6GHz (up to 71GHz)

URLLC features (supporting more diverse vertical applications)

- Enhanced sidelink (for V2X and other commercial use cases)
- Public Safety (UE-NW relaying)
- Enhanced IIoT/URLLC

mMTC features (supporting diverse device types)

- REDCAP (Reduced Capability) NR → formerly known as NR-Light
- Small data transmission in RRC inactive

eMBB & Basic functionalities [1/6]

For eMBB & basic functionalities

- Perfecting existing functionalities for more advanced eMBB use cases
- Introducing new functionalities for new requirements from the market

Rel-17 eMBB & basic functionalities

functionalities Perfecting existing

MIMO **Further enhancements**

UE power saving **enhancements**

IAB enhancements

Introducing nev **functionalities**

NR over NTN

52.6GHz~71GHz

Supporting new higher bands (up to 71GHz)

Fast Access based solution

RAN slicing

Supporting multi-SIM device

Coverage extension (FR1 & FR2)

eMBB & Basic functionalities [2/6]

NTN (Non-Terrestrial Networks) over NR

- Main purpose
 - Providing enhanced coverage, reliability and availability
 - Providing connectivity for unserved areas that cannot be covered by traditional terrestrial network
 - Remote M2M/IoT devices, moving platforms (e.g., aircraft, maritime vessels, high-speed trains)
 - Ensuring service availability/reliability anywhere, especially for critical communication

NTN based on transparent payload

- Radio Frequency filtering, Frequency conversion and amplification.
- Hence, the waveform signal repeated by the payload is un-changed

Field of view of the satellite (or USA platform)

NTN based on non-transparent payload

- Radio Frequency filtering, Frequency conversion and amplification as well as demodulation/decoding, switch and/or routing, coding/modulation
- This is effectively equivalent to having all or part of base station functions (e.g. gNB) on board the satellite (or UAS platform)

Source: 3GPP TR 38.821, Solutions for NR to support non-terrestrial networks

eMBB & Basic functionalities [3/6]

NTN NG-RAN architecture

Networking-RAN architecture with transparent satellite

- Satellite repeats the NR-Uu radio interface from the feeder link (between the NTN gateway and the satellite) to the service link (between the satellite and the UE) and vice versa
- The NTN GW supports all necessary functions to forward the signal of NR-Uu interface

Regenerative satellite without ISL, gNB processed payload

- The satellite payload implements regeneration of the signals received from Earth.
 - ✓ NR-Uu radio interface on the service link between the UE and the satellite
 - ✓ Satellite Radio Interface (SRI) on the feeder link between the NTN gateway and the satellite.
- SRI (Satellite Radio Interface) is a transport link between NTN GW and satellite

Among the above, Rel-17 NTN normative work will be done only for transparent satellite architecture

eMBB & Basic functionalities [4/6]

Types of NTN platform

 Aims to specify the enhancements identified for NR NTN (non-terrestrial networks) especially LEO and GEO with implicit compatibility to support HAPS (high altitude platform station) and ATG (air to ground) scenarios

Platforms	Altitude range	Orbit	Typical beam footprint size	
Low-Earth Orbit (LEO) satellite	300 – 1500 km		100 – 1000 km	
Medium-Earth Orbit (MEO) satellite	7000 – 25000 km	Circular around the earth	100 – 1000 km	
Geostationary Earth Orbit (GEO) satellite	35 786 km	notional station keeping position fixed in terms of elevation/azimuth	200 – 3500 km	
UAS platform (including HAPS)	8 – 50 km (20 km for HAPS)	with respect to a given earth point	5 - 200 km	
High Elliptical Orbit (HEO) satellite	400 – 50000 km	Elliptical around the earth	200 – 3500 km	

Source: 3GPP TR 38.821, Solutions for NR to support non-terrestrial networks

NTN specific technical challenges

• Very high propagation delay, Large cell size & moving cells, Very high speed mobility UEs

eMBB & Basic functionalities [5/6]

NR Multicast & broadcast

- Main use case
 - General multicast and broadcast services, e.g., IPTV, group communications, IoT applications, V2X applications, public safety

For UEs in RRC CONNECTED

- Dynamic change of Broadcast/Multicast service delivery between multicast (PTM) and unicast (PTP) with service continuity
- Support for basic mobility with service continuity
- Improve reliability of Broadcast/Multicast service, e.g. by UL feedback

Dynamic change of Broadcast/Multicast service delivery between PTM and PTP with service continuity

For UEs in RRC_IDLE/INACTIVE

 Enable the reception of Point to Multipoint transmission by UEs in RRC_IDLE/RRC_INACTIVE

eMBB & Basic functionalities [6/6]

NR support for 52.6GHz ~ 71GHz

As for frequency range > 52.6GHz, 3GPP agreed to address the subset 52.6GHz ~ 71GHz first (so called FR2_ext) with a simple approach that extends FR2 characteristics

Main motivation

- 60GHz bands stands-out
 - Global, available today, regulations in place
 - No 3GPP solution which can tap on market opportunities

Main objective

- Study of required changes to NR using existing DL/UL NR waveform to support operation between 52.6 GHz and 71 GHz
 - Study of applicable numerology including SCS, channel BW (including maximum BW), and their impact to FR2 physical layer design
- Study of channel access mechanism, considering potential interference to/from other nodes, assuming beam based operation, in order to comply with regulatory requirements applicable to Uband for frequencies between 52.6 GHz and 71 GHz

mMTC features [1/3]

REDCAP for NR, driving IoT expansion (A.K.A NR-Light)

- Much lower UE complexity and power consumption than Rel-15/16 NR, scaling down 5G NR for lower complexity IoT devices
- Increased network efficiency and coverage optimization

Target use cases

- √ 5G connectivity
- ✓ smart city, smart grid
- √ wearables

mMTC features [2/3]

REDCAP for NR, use case specific requirements

Use cases	Ref. bit rate (Mbps)	Peak bit rate (Mbps)	End-to-end latency (ms)	Reliability	Mobility	Battery lifetime
Industrial wireless sensors	< 2 (potentially UL heavy)		< 100; 5-10 for safety related sensors	Comm. service availability 99.99%	Stationary	At least a few years
Video surveillance	2-4 for economic video; 7.5-24 for high-end video (UL heavy)		<500	99-99.9%		
Wearables	5-50 in DL; 2-5 in UL	Up to 150 in DL; Up to 50 in UL				Multiple days (up to 1-2 weeks)

Main objective

- Identify and study potential UE complexity reduction features
 - Reduced number of UE RX/TX antennas, UE Bandwidth reduction, Half-Duplex-FDD, Relaxed UE processing time, Relaxed UE processing capability
- UE power saving and battery lifetime enhancement for reduced capability UEs in applicable use cases (e.g. delay tolerant)
 - Reduced PDCCH monitoring by smaller numbers of blind decodes and CCE limits, Extended DRX for RRC, Inactive and/or Idle, RRM relaxation for stationary devices

mMTC features [3/3]

Small Data Transmission in RRC INACTIVE

- Targeting traffic with infrequent small data transmission
 - Traffic from meters or sensors-type NR REDCAP UEs with periodic measurement reporting
 - Traffic from wearables with periodic positioning information
 - Traffic generated from instant messaging services or heart-beat messages, etc
- Under these traffic types, **UE** is often maintained by network in RRC inactive state
- Without support of data transmission in RRC inactive state, UE has to resume the connection with RRC connected state

Main objective

- UL small data transmissions for RACH-based schemes (i.e. 2-step and 4-step RACH)
- Transmission of UL data on pre-configured PUSCH resources (i.e. reusing the configured grant type 1) – when TA is valid

URLLC features [1/2]

IIOT & URLLC enhancements

For URLLC features

 Customizing NR further for various verticals such as automotive, logistics, public safety, media and manufacturing use cases

- Sidelink enhancements, focusing on
 - √ V2X (especially for VRU protection), VRU: Vulnerable Road User
 - ✓ Commercial use cases (e.g., XR headset support)
 - ✓ Public safety (UE-NW relaying)

- Improved support for factory automation and URLLC
 - √ Physical layer feedback enhancements
 - ✓ Identification of enhancements for URLLC/IIoT operation in controlled environments on unlicensed bands
 - ✓ Intra-UE multiplexing and prioritization of traffic with different priority
 - ✓ Enhancements for support of time synchronization

URLLC features [2/2]

- Evaluation and gap analysis of NR performance in relation to XR support
 - √ Confirm XR and Cloud Gaming applications of interest

XR evaluation & Gap analysis

	Cloud Gaming	VR split rendering	AR split computation	
HMD/Device	5G Smartphone or Tablet	Head-mounted with 5G modem attached	Head-mounted with USB/Bluetooth connection to "Puck" or Smartphone with 5G modem	
5G usage	QoS/OTT	QoS	QoS	
Location	Outdoor	Enterprise-Indoor, Residential-Indoor, Outdoor	Enterprise-Indoor, Outdoor	
Mobility	Static, Hi-speed	Limited to head movements and restricted body movements, Hi-speed (VR in a train, back of a car)	Pedestrian, Hi-speed	

Source: Qualcomm, 3GPP, RP-190836, XR & 5G

- ✓ Identify the traffic model for each application of interest
- √ Identify evaluation methodology
- ✓ Evaluate needs in terms of simultaneously providing very high data rates and low latency in a resource-efficient manner

Conclusion

Everything under 5G

→ 5G technologies in 3GPP keep evolving so that virtually everyone and everything is connected with each other by means of 5G connectivity, laying foundation for digital transformation

